
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
CERN  PS DIVISION

Geneva, Switzerland
29 March, 2001

CERN-PS-CO-2001-xx

A UNIX Fetch/Write Client Interface for SIMATIC
PLCs

F. Locci, G. Mornacchi

2

1. Introduction

We describe the client implementation, running under UNIX-like operating system, of the SIMATIC
Fetch/Write protocol [1]. The implementation is intended to provide in a simple way communications, from
a UNIX-like machine such as a LynxOS based DSC, with a SIMATIC S5 PLC.

This work is part of the upgrade of the ISOLDE front-end controls [2]; in particular it is part of the
developments related to the controls of the vacuum and stepping motors. This equipment is driven by an old
SIMATIC S5 based set of PLCs originally interfaced to a PC via a SINEC L2 (Siemens proprietary) bus.
Because:

1) Ethernet has been selected by the project [2] to connect the existing PS control system
front-end, i.e. a DSC, to PLCs, and

2) we do not want to modify the existing S5 PLC software.

The simplest way to satisfy both requirements is represented by a communication protocol which
provides elementary read/write access to locations in a PLC data block. The fetch/write protocol is such a
tool and it is implemented by the Siemens Ethernet couplers for both S5 and S7 series PLCs.

2. Protocol Description

The client fetch/write protocol is based on transactions: the client sends a request command specifying
the required operation (fetch or write), the related data block in the PLC, the offset within the data block and
the amount of 16 bit words to be transferred. The above information is packed in a (request) header by the
client, in case of a write the data to be written into the PLC follow the header. The PLC, actually the
Ethernet coupler, executes the command and replies with a message consisting of an (acknowledge) header,
identifying the request and reporting the status of the original command, and the requested data when the
original command was a fetch. The following tables define the request and acknowledgement headers for
both the fetch and write commands (from [1]):

Write Request Frame Write Acknowledgement Frame
Byte # Field Name Value Field Name Value
0 System ID "S" System ID "S"
1 …. "5" "5"
2 Header Length 16d Header Length 16d
3 ID Op Code 1 ID OP Code 1
4 Op Code Length 3 Op Code Length 3
5 Op Code Length 3 Op Code Length 4
6 ORG Field 3 Ack Field 0Fh
7 Org Field length 8 S Field Length 3
8 ORG ID… Error Number
9 DB Number Empty Field FFh
10 Start… High Part Length Empty Field 7
11 …Address Low part
12 Number of.. High Part Free
13 ..words.. Low Part
14 Empty Field FFh
15 Empty Field Size 2
16 Data up to 64K bytes

Table 1. Write command headers.

The fetch/write protocol runs on top of the ISO-on-TCP protocol, RFC1006, as implemented by the
Siemens S5/S7 Ethernet couplers. On the LynxOS/UNIX side the fetch/write client runs on top of the
rfc1006 implementation [3] developed specifically for the “industrial components integration” project.

3

Read Request Frame Read Acknowledgement Frame
Byte # Field Name Value Field Name Value
0 System ID "S" System ID "S"
1 …. "5" "5"
2 Header Length 16d Header Length 16d
3 ID Op Code 1 ID OP Code 1
4 Op Code Length 3 Op Code Length 3
5 Op Code 5 Op Code 6
6 ORG Field 3 Ack Field 0Fh
7 Org Field length 8 S Field Length 3
8 ORG ID… Error Number
9 DB Number Empty Field FFh
10 Start… High Part Length Empty Field 7
11 …Address Low part
12 Number of.. High Part Free
13 ..words.. Low Part
14 Empty Field FFh
15 Empty Field Size 2

Data up to 64KB (if Error number = 0)

3. Fetch/Write Client API

The fetch/write client is accessible through an API including open/close functions and fetch/write
commands.

Open

s = FwOpen(char *ip, int port, char *dst, char *src, long ts)

Input Parameter Type Meaning
Ip Char * IP address of destination TCP coupler
Port Int Port number of ISO-on-TCP server
Dst Char * TSAP destination string
Src Char * TSAP source string
Ts Long Time out in seconds

Output Return
s Int Socket number of the established connection if >0.

Error code otherwise

FwOpen opens a connection with the PLC, at the entry points specified by the source and destination
TSAPs. If successful it returns the local socket number identifying the connection. It is merely a redefinition
of the rfcsock rfcConnect call.

Close

r = fwClose(int s, int shutdown, char *dst, char *src)

Input Parameter Type Meaning
s int Socket number as returned by fwOpen
shutdown Int Control flag
Dst Char * TSAP destination string
Src Char * TSAP source string

Output Return

4

r Int Status code: 0 if successful, <0 otherwise

FwClose requests the remote PLC to close the connection identified by the socket number s. It is a
redefinition of the rfcsock rfcDisconnect function call.

Fetch

R = fwFetch(int s, unsigned char dbNumber, unsigned short startAddress, unsigned short size, unsigned
char *data, int ts)

Input Parameter Type Meaning
s int Socket number, as returned by fwOpen
dbNumber Unsigned char Data block number in PLC
startAddress Unsigned short Offset (in 16-bit words) within the data block
Size Unsigned short Number of 16-bit words to fetch from PLC
data Unsigned char * User data array (filled with the fetch result)
ts Int Time out in seconds

Output Return
r Int Status code: 0 if success, non 0 otherwise

FwFetch asks the Ethernet/TCP coupler to fetch “size” words from the PCL data block “dbNumber”
starting at the (word) offset “startAddress”. The fetched values are then returned in the user “data” array.

Write

R = fwWrite(int s, unsigned char dbNumber, unsigned short startAddress, unsigned short size, unsigned
char *data, int ts)

Input Parameter Type Meaning
s int Socket number, as returned by fwOpen
dbNumber Unsigned char Data block number in PLC
startAddress Unsigned short Offset (in 16-bit words) within the data block
Size Unsigned short Number of 16-bit words to fetch from PLC
data Unsigned char * User data array (data to be written to the PLC)
ts Int Time out in seconds

Output Return
r Int Status code: 0 if success, non 0 otherwise

FwWrite writes “size” words, as given in the user “data” array, into the PLC data block “dbNumber”
starting at the (word) offset “startAddress”.

Errors

All the API functions return 0 in case of a successful completion, otherwise they may return the
following error codes:
PS Error code Meaning Explanation
EQP_PROTOCOL Invalid header An invalid fetch/write protocol

header was received from the PLC
EQP_MEMALLOC No dynamic space The library could not allocate

dynamic memory via the malloc
syscall

EQP_ARRDIMDIFF Bad reply (fwFetch only) The PLC did not return the
requested number of words

Other errors As returned by the underlying
rfcsock library

5

Performance

Results from some simple performance measurement are shown below. These apply to two different
configurations:

1) a DSC connected to a S5 PLC system via the Ethernet coupler CP 1430 TCP.
Fetch Number of words Times (ms)

1 35.5
10 37.5

Write
1 36
10 37.5

2) a DSC connected to a S7-400 PLC via the YYYY Ethernet coupler.
Fetch Number of Words Time (ms)

1 12.5
10 12.6
50 13.1
100 13.6
200 16.8
250 195
300 195
400 198
500 395

References

1) SIMATIC CP 1430 TCP coupler. Appendix B
2) J. Allard et al. Consolidation of the ISOLDE controls. PS/CO 2001-xx
3) F. Locci. Rfcsock package (iso-on-tcp client library)

